Penggunaan Binary Logit Untuk Prediksi Financial Distress Emiten di BEJ: Studi Kasus Emiten Industri Perdagangan.

PENGGUNAAN BINARY LOGIT

UNTUK PREDIKSI FINANCIAL DISTRESS

PERUSAHAAN YANG TERCATAT DI BURSA EFEK JAKARTA

 (Studi Kasus Emiten Industri Perdagangan)

Rowland Bismark Fernando Pasaribu

Abstrak

Penelitian ini bertujuan untuk membentuk prediksi financial distress pada perusahaan publik terdaftar di Bursa Efek Jakarta khususnya yang tergabung dalam industri perdagangan. Sampel yang digunakan dalam penelitian adalah seluruh perusahaan publik yang tergabung dalam industri perdagangan periode 2002–2006. Penelitian ini menggunakan 6 diskriminator awal dan 34 rasio keuangan sebagai variabel operasional. Teknik analisis yang digunakan adalah regresi binary logit. Hasil penelitian menunjukkan 18 rasio keuangan yang signifikan sebagai predictor adalah:  QATA, RETE, CashCL, CashTA, WCTA, CATA, LDWC, LDTA, TETA, NPTA, ITO, COLPER, NITL, SALCA, ROI, CffoTL, CffoTA, dan CffoTE. Ini menunjukkan bahwa perusahaan yang tidak menciptakan nilai tambah ekonomis, illikuid, efisiensi operasional yang rendah, dan tingkat leverage keuangan yang tinggi memiliki probabilitas kesulitan keuangan yang besar. Tingkat akurasi model yang dihasilkan berada dalam kisaran 76,28 %-98,08% persen.

Keywords: financial distress, rasio keuangan, binary logit.

PENDAHULUAN

Bagaimana financial distress dapat diprediksi? Pertanyaan ini tidak hanya penting bagi para manajer perusahaan, tapi juga bagi para stakeholder perusahaan. Stabilitas keuangan perusahaan menjadi perhatian penting bagi karyawan, investor, pemerintah dan pemilik bank dan otoritas pengatur regulasi. Literatur atas trend keuangan global yang menurun, manajemen resiko, early warning system, termasuk teori pokok neraca berusaha se-komprehensif mungkin untuk menyediakan prediksi peringatan suatu krisis yang segera terjadi (Krugman, 1999). Oleh karena itu tidak mengejutkan bahwa prediktif distress atas suatu perusahaan tetap menarik perhatian dan pantas dipertimbangkan.

Banyak kajian telah dilakukan terhadap topik ini baik dari segi teknik pengumpulan data, teknik analisis dan seterusnya dengan persamaan tujuan yakni mencari solusi optimal akan kinerja estimasi yang terbentuk, misalnya: model logit (Ohlson, 1980; Johnsen dan Melicher,1994; Lennox, 1999; Theodossiou, Kahya, Saidi dan Philippatos, 1996; Kaiser 2001; Bernhand-sen, 2001; Neophytou, Charitou dan Charambolis, 2000; Barniv, Agarwal dan Leach, 2002), neural networks dan konsep lainnya seperti model gambler ruin. Bahkan Morris (1997) menggunakan pendekatan survey dalam memprediksi kebangkrutan. Dalam hal objek penelitian, juga terdapat beragam objek; kawasan (negara, regional, dan lain-lain), klasifikasi industri, rentang waktu, kondisi perekonomian, dan seterusnya. Untuk prediksi financial distress perusahaan di suatu negara misalnya, telah dilakukan oleh Orlowski untuk negara Polandia, Lizal (2002) untuk negara Czech; Hunter dan Isachenkova (2000) untuk negara Russia. Pada literature asset pricing, konsep financial distress juga telah digunakan untuk menjelaskan pola pengembalian saham lintas industri (Chan and Chen 1991, Fama and French 1996, Garlappi dan Hong: 2007). Idenya yakni pada perusahaan tertentu yang memiliki probabilitas superior bahwa perusahaan akan gagal melaksanakan kewajiban keuangannya maka saham perusahaan distress ini cenderung untuk bergerak dengan arah yang sama, jadi resikonya tidak dapat di-diversifikasi, sehingga investor mengharapkan premi tertentu guna menyikapi resiko tersebut. Premi untuk resiko distress mungkin tidak masuk dalam perhitungan CAPM kalau kegagalan perusahaan berkorelasi dengan kesempatan investasi yang melemah (Merton, 1973) atau menurun dalam komponen keuntungan yang tidak terukur seperti human capital (Fama and French, 1996) atau debt securities (Ferguson dan Shockley, 2003; Campbell, John Y., Jens Hilscher, dan Jan Szilagyi. 2006).

Kenyataan bahwa financial distress suatu perusahaan ditentukan oleh beragam faktor tidak dipungkiri. Proses identifikasi dan kuantifikasi pada faktor-faktor tersebut juga bahkan tidak selalu memungkinkan. Dan lagi definisi financial distress juga bukanlah subjek yang mudah untuk dikuantifikasi, karenanya melakukan pemodelan akan financial distress selalu tergantung pada sejumlah asumsi yang dapat dikuantifikasi. Dalam penelitian ini akan digunakan variabel kualitatif, maksudnya adalah diasumsikan bahwa situasi keuangan suatu perusahaan dapat diekspresikan dengan variabel tersebut, misalnya teknik binary, dimana “1” menyatakan kondisi non-distress dan “0” merepresentasikan perusahaan dalam kondisi financial distress. Hal tersebut juga berarti bahwa penelitian ini mengasumsikan bahwa variabel kualitatif itu dengan alasan tertentu dapat dijelaskan oleh sejumlah faktor variabel lainnya baik secara kuantitatif atau kualitatif.

Sebahagian besar studi yang dilakukan mengenai prediksi financial distress adalah model yang terbentuk berdasarkan analisis ekonometrik terhadap rasio keuangan. Terdapat dua pertimbangan mengenai hal tersebut: pertama, laporan keuangan yang dipublikasikan berisi banyak informasi tentang prospek dan capaian perusahaan, dan yang kedua ini merupakan suatu cara untuk mengendalikan efek ukuran sistematis variabel di bawah pengujian (Lev dan Sunder, 1979:187-188). Oleh karena itu, analisa rasio tidak hanya disukai manakala penafsiran perhitungan keuangan diperlukan, tetapi juga telah memainkan fungsi penting dalam pengembangan model prediksi kesulitan keuangan.

Penggunaan analisis rasio untuk memprediksi corporate failure pertama kali dilakukan oleh Patrick (1932) dan terakhir oleh Beaver (1966), yang menciptakan kerangka kerja untuk analisis univariat kebangkrutan. Sampai saat ini penelitian Beaver (1966) telah dikritisi dalam hal ketergantungan dalam rasio tunggal dibanding dengan penggunaan sejumlah faktor yang mampu secara bersama-sama mengindikasi corporate failure diperiode berikutnya. Hasilnya, ketertarikan dalam model analisis multi diskriminan (MDA) mendominasi literatur prediksi kebangkrutan, kegagalan perusahaan, dan kesulitan keuangan. Satu contoh adalah Altman (1968, 1983) yang menggunakan data perusahaan Amerika Serikat dan analisis multi diskriminan untuk mengembangkan model linear Z-score, ZETA, dan terakhir model ZETA kuadratik yang mana tingkat akurasi model meningkat untuk empat tahun sebelum kebangkrutan dilaporkan. Di Indonesia, penggunaan analisis multivariat untuk memprediksi financial distresss juga telah banyak dilakukan, beberapa diantaranya adalah Priambodo (2002), Almilia (2006), dan Brahmana (2007). Perbedaan penelitian ini dengan penelitian sebelumnya adalah pada indikator financial distress, teknik analisis, dan periode penelitian yang digunakan. Penelitian ini mencoba mengindikasi beberapa kriteria rasio keuangan sebagai klasifikasi awal perusahaan ke dalam kelompok distress dan non-distress. Indikator tersebut mewakili masing-masing proksi kinerja perusahaan pada suatu periode tertentu. Berdasarkan pemaparan tersebut, peneliti tertarik untuk melakukan analisis binary logit menggunakan rasio keuangan untuk memprediksi financial distress terhadap emiten industri perdagangan yang tercatat di Bursa Efek Jakarta.

Silahkan download disini

Citation:

Pasaribu, Rowland Bismark, Penggunaan BinaryLogit Untuk Prediksi Financial Distress Emiten di BEJ: Studi Kasus Emiten Industri Perdagangan. (Jurnal Ekonomi, Bisnis dan Akuntansi VENTURA, August, 2008Vol.11, No.2: 153-172).

  1. junizkacu
    May 18, 2012 at 11:23 am

    bapak …, ini ga ad soft copina ? untuk selengkapnya ? hihihih 🙂

  1. No trackbacks yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: